Showing posts with label fat-soluble vitamins. Show all posts
Showing posts with label fat-soluble vitamins. Show all posts

Tuesday, 19 August 2014

Activator X

Activator X, the almost-mythical vitamin discovered and characterized by Weston Price, has been identified! For those of you who are familiar with Weston Price's book 'Nutrition and Physical Degeneration', you know what I'm talking about. For the rest of you, allow me to explain.

Weston Price was a dentist and scientist in the early part of the 20th century. Practicing dentistry in Cleveland, he was amazed at the poor state of his patients' teeth and the suffering it inflicted. At the time, dental health was even worse than it is today, with some children in their teens already being fitted for dentures. Being a religious man, he could not bring himself to believe that 'physical degeneration' was what God intended for mankind. He traveled throughout the world looking for cultures that did not have crooked teeth or dental decay, and that also exhibited general health and well-being. And he found them. A lot of them.

These cultures were all considered 'primitive' at the time, and were not subject to the lifestyles or food choices of the Western world. He documented, numerically and with photographs, the near-absence of dental cavities and crooked teeth in a number of different cultures throughout the world. He showed that like all animals, humans are healthy and robust when occupying the right ecological niche. Price had a deep respect for the nutritional knowledge these cultures curated.

He also documented the result when these same cultures were exposed to Western diets of white flour, sugar and other industrially processed foods: they developed rampant cavities, their children grew with crooked teeth due to narrow dental arches, as well as a number of other strikingly familiar health problems. I think it's worth mentioning that Price's findings were universally corroborated by doctors in contact with the same cultures at the time. They are also corroborated by the archaeological record. Many of his findings were published in respected peer-reviewed journals. 'Nutrition and Physical Degeneration' is required reading for anyone interested in the relationship between nutrition and health.

Naturally, Price wanted to understand what healthy diets had in common besides the absence of white flour and sugar. Having studied cultures as diverse as the carnivorous Inuit, the dairy-eating Masai and agricultural groups in the Andes, he realized that humans are capable of thriving on very diverse foods. However, he did find one thing in common: they all ate some amount of fat-soluble, animal-derived vitamins. Even the near-vegetarian groups ate insects or small animals that were rich in these vitamins. He looked for, but did not find, a single group that was entirely vegetarian and had the teeth and health of the groups he described in 'Nutrition and Physical Degeneration'.

There were three vitamins he found abundantly in the diets of healthy non-industrialized people: A, D, and an unknown substance he called 'activator X'. He considered them all to be synergistic and critical for proper mineral metabolism (tooth and bone formation and maintenance) and general health. He had a chemical test for activator X, but he didn't know its chemical structure and so it remained unidentified. He found activator X most abundantly in grass-fed butter (but not grain fed!), organ meats, shellfish, insects, and fish eggs. Many of these foods were fed preferentially to pregnant or reproductive-age women in the groups he studied.

Price used extracts from grass-fed butter (activator X), in combination with high-vitamin cod liver oil (A and D), to prevent and reverse dental cavities in many of his patients. 'Nutrition and Physical Degeneration' contains X-rays of case studies showing re-calcification of severe cavities using this combination.

After reading his book, I wasn't sure what to make of activator X. If it's so important, why hasn't it been identified in the 60+ years since he described it? I'm happy to say, it finally has. In the summer of 2007, Chris Masterjohn wrote an article for the Weston Price foundation website, in which he identified Weston Price's mystery vitamin: it's vitamin K2, specifically the MK-4 isoform (menatetrenone).

It occurs exactly where Weston Price described it, and research is beginning to find that it's also critical for mineral metabolism, bone and tooth formation and maintenance. Its function is synergistic with vitamins A and D. To illustrate the point, where do A, D and K2 MK-4 all occur together in nature? Eggs and milk, the very foods that are designed to feed a growing animal. This is true from sea urchins to humans, confirming the ubiquitous and critical role of these nutrients. K2 has not yet been recognized as such by the mainstream, but it is every bit as important to health as A and D. The scientific cutting edge is beginning to catch on, however, due to some very tantalizing studies.

In the next post, I'll go into more detail about K2, what the science is telling us and where to get it.


Monday, 18 August 2014

Vitamin K2, menatetrenone (MK-4)

Weston Price established the importance of the MK-4 isoform of vitamin K2 (hereafter, K2) with a series of interesting experiments. He showed in chickens that blood levels of calcium and phosphorus depended both on vitamin A and K2, and that the two had synergistic effects on mineral absorption. He also showed that chickens preferred eating butter that was rich in K2 over butter low in K2, even when the investigators couldn't distinguish between them. Young turkeys fed K2-containing butter oil along with cod liver oil (A and D) also grew at a much faster rate than turkeys fed cod liver oil alone.

He hypothesized that vitamin A, vitamin D and vitamin K2 were synergistic and essential for proper growth and subsequent health. He particularly felt that the combination was important for proper mineral absorption and metabolism. He used a combination of high-vitamin cod liver oil and high-vitamin butter oil to heal cavities, reduce oral bacteria counts, and cure numerous other afflictions in his patients. He also showed that the healthy non-industrial groups he studied had a much higher intake of these fat-soluble, animal-derived vitamins than more modern cultures.

Price found an inverse correlation between the levels of K2 in butter and mortality from cardiovascular disease and pneumonia in a number of different regions. A recent study examined the relationship between K2 (MK-4 through 10) consumption and heart attack risk in 4,600 Dutch men. They found a strong inverse association between K2 consumption and heart attack mortality risk. Men with the highest K2 consumption had a whopping 51% lower risk of heart attack mortality and a 26% lower risk of death from all causes compared to men eating the least K2! Their sources of K2 MK-4 were eggs, meats and dairy. They obtained MK-5 through MK-10 from fermented foods and fish. The investigators found no association with K1, the form found in plants.

Perigord, France is the world's capital of foie gras, or fatty goose liver. Good news for the bon vivants: foie gras turns out to be the richest known source of K2. Perigord also has the lowest rate of cardiovascular mortality in France, a country already noted for its low CVD mortality.

Rats fed warfarin, a drug that inhibits K2 recycling, develop arterial calcification. Feeding the rats K2 completely inhibits this effect. Mice lacking matrix Gla protein (MGP), a vitamin K-dependent protein that guards against arterial calcification, develop heavily calcified aortas and die prematurely. So the link between K2 and cardiovascular disease is a very strong one.

Mammals can synthesize K2 MK-4 from K1 to some degree, so dietary K1 and other forms of vitamin K may contribute to K2 MK-4 status

The synergism Weston Price observed between vitamins A, D and K2 now has a solid mechanism. In a nutshell, vitamins A and D signal the production of some very important proteins, and K2 is required to activate them once they are made. Many of these proteins are involved in mineral metabolism, thus the effects Price saw in his experiments and observations in non-industrialized cultures. For example, osteocalcin is a protein that organizes calcium and phosphorus deposition in the bones and teeth. It's produced by cells in response to vitamins A and D, but requires K2 to perform its function. This suggests that the effects of vitamin D on bone health could be amplified greatly if it were administered along with K2. By itself, K2 is already highly protective against fractures in the elderly. It works out perfectly, since K2 also protects against vitamin D toxicity.

I'm not going to go through all the other data on K2 in detail, but suffice it to say it's very very important. I believe that K2 is a 'missing link' that explains many of our modern ills, just as Weston Price wrote. Here are a few more tidbits to whet your appetite: K2 may affect glucose control and insulin release (1, 2). It's concentrated in the brain, serving an as yet unknown function.

Hunter-gatherers didn't have multivitamins, they had nutrient-dense food. As long as you eat a natural diet containing some vegetables and some animal products, and lay off the processed grains, sugar and vegetable oil, the micronutrients will take care of themselves.

Vitamin K2, MK-4 is only found in animal products. The best sources known are grass-fed butter from cows eating rapidly growing grass, and foie gras. K2 tends to associate with beta-carotene in butter, so the darker the color, the more K2 it contains (also, the better it tastes). Fish eggs, other grass-fed dairy, shellfish, insects and other organ meats are also good sources. Chris Masterjohn compiled a list of food sources in his excellent article on the Weston Price foundation website. I highly recommend reading it if you want more detail. K2 MK-7 is found abundantly in natto, a type of fermented soybean, and it may be partially converted to MK-4.

Finally, you can also buy K2 supplements. The best one is butter oil, the very same stuff Price used to treat his patients. I have used this one personally, and I noticed positive effects on my skin overnight. Thorne research makes a synthetic liquid K2 MK-4 supplement that is easy to dose drop-wise to get natural amounts of it. Other K2 MK-4 supplements are much more concentrated than what you could get from food so I recommend avoiding them. I am generally against supplements, but I've ordered the Thorne product for a little self-experimentation. I want to see if it has the same effect on my skin as the butter oil (update- it does).

Real Food VIII: Ghee

All this talk about butter is making me hungry. Richard mentioned in the comments that he bought some ghee recently and has been enjoying it, so I thought I'd post a recipe. Ghee is the Hindi word for clarified butter. It's butter that has had everything removed but the fat. Rich in fat-soluble vitamins and lacking the sometimes problematic lactose and casein, ghee has rightfully been considered a health food in India since ancient times.

Another advantage of ghee is its high smoke point, which is higher than butter because it doesn't contain any protein or sugars. Consequently, food sauteed in ghee has a clean, rich taste.

The recipe is simple but touchy. I recommend using the best butter you can get your hands on. 100% grass-fed, unsalted cultured butter is the best.

Ingredient and materials
  • Butter (1 lb minimum)
  • Wide-mouth glass jars
  • Cheesecloth
  • Rubber bands
Recipe
  1. Place the butter in a saucepan and turn the heat to medium until it's melted.
  2. Once it begins to boil, turn the heat down to low. It's very important to calibrate the heat correctly. Typically, you will want the burner on its lowest setting. The idea is to evaporate the water without burning the oil. It should boil, but slowly.
  3. The melted butter starts out cloudy but gradually clears up as the water evaporates. At the same time, a crust will form on the surface of the ghee and the bottom of the pan. Keep the heat very low.
  4. Push a portion of the top crust to the side with a spoon to see inside of the saucepan. When the butter looks clear and bubbles only rise from the bottom every few seconds, it's done. You have to be very careful because once the water has evaporated, the fat heats up quickly and burns the crust. This gives the ghee an acrid flavor and color. Make sure to handle the pot cautiously, because hot oil can give severe burns.
  5. Allow the ghee to cool until it's warm but not hot. Place a piece of cheesecloth over the lid of your jar. Secure it with a rubber band. Pour the ghee through the cheesecloth, into the jar.
  6. Store ghee in the refrigerator or at room temperature. It keeps much longer than butter.
The picture above is of my last batch of ghee.

Sunday, 17 August 2014

Celiac and Fat-Soluble Vitamins

One of the things I've been thinking about lately is the possibility that intestinal damage due to gluten grains (primarily wheat) contributes to the diseases of civilization by inhibiting the absorption of fat-soluble vitamins. If it were a contributing factor, we would expect to see a higher incidence of the common chronic diseases in newly-diagnosed celiac patients, who are often deficient in fat-soluble vitamins. We might also see a resolution of chronic disease in celiac patients who have been adhering faithfully to a long-term, gluten-free diet.

One thing that definitely associates with celiac disease is bone and tooth problems. Celiac patients often present with osteoporosis, osteopenia (thin bones), cavities or tooth enamel abnormalities (thanks Peter).

An Italian study showed that among 642 heart transplant candidates, 1.9% had anti-endomyosal antibodies (a feature of celiac), compared with 0.35% of controls. That's more than a 5-fold enrichment! The majority of those patients were presumably unaware of their celiac disease, so they were not eating a gluten-free diet.

Interestingly, celiac doesn't seem to cause obesity; to the contrary. That's one facet of modern health problems that it definitely does not cause.

The relationship between cancer and celiac disease is very interesting. The largest study I came across was conducted in Sweden using retrospective data from 12,000 celiac patients. They found that adult celiac patients have a higher overall risk of cancer, but that the extra risk disappears with age. The drop in cancer incidence may reflect dropping gluten following a celiac diagnosis. Here's another study showing that the elevated cancer risk occurs mostly in the first year after diagnosis, suggesting that eliminating gluten solves the problem. Interestingly, celiac patients have a greatly elevated risk of lymphoma, but a lower risk of breast cancer.

There's a very strong link between celiac and type I diabetes. In a large study, 1 in 8 type I diabetic children had celiac disease. This doesn't necessarily tell us much since celiac and type I diabetes are both autoimmune disorders.

One last study to add a nail to the coffin. Up to this point, all the studies I've mentioned have been purely observational, not able to establish a causal relationship. I came across a small study recently which examined the effect of a high-fiber diet on vitamin D metabolism in healthy (presumably non-celiac) adults. They broke the cohort up into two groups, and fed one group 20g of bran in addition to their normal diet. The other group got nothing extra. The bran-fed group had a vitamin D elimination half-life of 19.5 days, compared to 27.5 for the control group. In other words, for whatever reason, the group eating extra bran was burning through their vitamin D reserves 30% faster than the control group.

Unfortunately, the paper doesn't say what kind of bran it was, but it was probably wheat or oat (**Update- it's wheat bran**). This is important because it would determine if gluten was involved. Either way, it shows that something in grains can interfere with fat-soluble vitamin status, which is consistent with the staggering negative effect of refined wheat products on healthy non-industrialized cultures.

Add to this the possibility that many people may have some degree of gluten sensitivity, and you start to see a big problem. All together, the data are consistent with gluten grains interfering with fat-soluble vitamin status in a subset of people. As I discussed earlier, this could contribute to the diseases of civilization. These data don't
prove anything conclusively, but I do find them thought-provoking.

Thanks to Dudua for the CC photo

Cancer and the Immune System

My understanding of cancer has changed radically over the past few months. I used to think of it as an inevitable consequence of aging, a stochastic certainty. The human body is made of about 50 trillion cells, many of which replicate their DNA and divide regularly. It's only a matter of time until one of those cells randomly accumulates the wrong set of mutations, and loses the molecular brakes that restrict uncontrolled growth.

Strictly speaking, the idea is correct. That is how cancer begins. However, there's another check in place that operates outside the cancer cell itself: the immune system. A properly functioning immune system can recognize and destroy cancerous cells before they become dangerous to the organism. In fact, your immune system has probably already controlled or destroyed a number of them in your lifetime.

I recently read a fascinating account of some preliminary findings from the lab of Dr. Zheng Cui at Wake Forest university. His group took blood samples from 100 people and purified a type of immune cell called the granulocyte. They then evaluated the granulocytes' ability to kill cervical cancer cells in a cell culture dish. They found that it varied dramatically from one individual to another. One person's granulocytes killed 97% of the cancer cells in 24 hours, while another person's killed 2%.

They found some important trends. Granulocytes from people over 50 years old had a reduced ability to kill cancer cells, as did granulocytes from people with cancer. This raises the possibility that cancer is not simply the result of getting too old, but a very specific weakening of the immune system.

The most important finding, however, was that the granulocytes' kung-fu grip declined dramatically during the winter months. Here's Dr. Cui:

Nobody seems to have any cancer-killing ability during the
winter months from November to April.

Hmm, I wonder why that could be?? Vitamin D anyone??



Tuesday, 5 August 2014

Can Vitamin K2 Reverse Arterial Calcification?

It certainly can in rats. In April 2007, Dr. Cees Vermeer and his group published a paper on the effect of vitamin K on arterial calcification (the accumulation of calcium in the arteries). As I mentioned two posts ago, arterial calcification is tightly associated with the risk of heart attack and death. Warfarin-treated rats are an established model of arterial calcification. Warfarin also causes calcification in humans. The drug is a "blood thinner" that inhibits vitamin K recycling, and inhibits the conversion of vitamin K1 (phylloquinone) to K2 MK-4 (menaquinone-4). This latter property turns out to be the critical one in the calcification process.

Rats are able to convert vitamin K1 to K2 MK-4, whereas humans don't seem to convert well. Conversion efficiency varies between species.
Dr. Vermeer's group treated rats with warfarin for 6 weeks, during which they developed extensive arterial calcification. They also received vitamin K1 to keep their blood clotting properly. At 6 weeks, the warfarin-treated rats were broken up into several groups:
  • One continued on the warfarin and K1 diet
  • One was placed on a diet containing a normal amount of K1 (no warfarin)
  • One was placed on a high K1 diet (no warfarin)
  • The last was placed on a high K2 MK-4 diet (no warfarin)
After 6 more weeks, the first two groups developed even more calcification, while the third and fourth groups lost about 40% of their arterial calcium. The high vitamin K groups also saw a decrease in cell death in the artery wall, a decrease in uncarboxylated (inactive) MGP, and an increase in arterial elasticity. They also measured the vitamin K content of aortas from each group. The group that received the 12-week warfarin treatment had a huge amount of K1 accumulation in the aorta, but no K2 MK-4. This is expected because warfarin inhibits the conversion of K1 to K2 MK-4. It's notable that when conversion to K2 was blocked, K1 alone was totally ineffective at activating MGP and preventing calcification.

In the group fed high K1 but no warfarin, there was about three times more K2 MK-4 in the aortas than K1, suggesting that they had converted it effectively and that vascular tissue selectively accumulates K2 MK-4. A high K1 intake was required for this effect, however, since the normal K1 diet did not reverse calcification. The rats fed high K2 MK-4 had only K2 MK-4 in their aortas, as expected.


What does this mean for us? K2 MK-4 appears to be the form of vitamin K that arteries prefer (although not enough is known about the longer menaquinones, such as MK-7, to rule out a possible effect). Humans don't seem to be very good at making the conversion from K1 to K2 MK-4 (at normal intakes; there are suggestions that at artificially large doses we can do it). That means we need to ensure an adequate K2 MK-4 intake to prevent or reverse arterial calcification; eating K1-rich greens won't cut it. It's worth noting that the amounts of K1 and K2 used in the paper were very large, far beyond what is obtainable through food. But the regression took only 6 weeks, so it's possible that a smaller amount of K2 MK-4 over a longer period could have the same effect in humans.

K2 MK-4 (and perhaps other menaquinones like MK-7) may turn out to be an effective treatment for arterial calcification and cardiovascular disease in general. It's
extremely effective at preventing osteoporosis-related fractures in humans. That's a highly significant fact. Osteoporosis and arterial calcification often come hand-in-hand. Thus, they are not a result of insufficient or excessive calcium, but of a failure to use the available calcium effectively. In the warfarin-treated rats described above, the serum (blood) calcium concentration was the same in all groups. Osteoporosis and arterial calcification are two sides of the same coin, and the fact that one can be addressed with K2 MK-4 means that the other may be as well.

Both osteoporosis and arterial calcification may turn out to be symptoms of vitamin K2 deficiency, resulting from the modern fear of animal fats and organs, and the deterioration of traditional animal husbandry practices. So eat your pastured dairy, organs, fish roe and shellfish! And if you have arterial calcification, as judged by a
heart scan, you may want to consider supplementing with additional K2 MK-4 (also called menaquinone-4 and menatetrenone).

The osteoporosis studies were done with 45 milligrams per day, which was well tolerated but seems excessive to me. Smaller doses were not tested. From the limited information available on the K2 content of foods, 1 milligram of K2 MK-4 per day seems like the upper limit of what you can get from food. That's about 40 times more than the average person eats. Anything more and you're outside your body's operating parameters. Make sure you're getting adequate vitamin D3 and A if you supplement with K2. Vitamin D3 in particular
increases the secretion of MGP, so the two work in concert.

Vitamin K2 in Marrow

I'm always on the lookout for foods rich in vitamin K2 MK-4, because it's so important and so rare in the modern food system. I heard some internet rumors that marrow might be rich in fat-soluble vitamins. Google let me down, so I decided to look through the rat studies on K2 MK-4 in which they looked at its tissue distribution.

I found one that looked at the K2 MK-4 content in different tissues of rats fed vitamin K1. Marrow was rich in K2, along with testes. It contains 10-20 times more MK-4 than liver by weight, and more than any of the other organs they tested (serum, liver, spleen, kidney, heart, testes, marrow, brain) except testes. They didn't include values for salivary gland and pancreas, the two richest sources.

If we assume beef marrow has the same amount of MK-4 as rat marrow per weight (I have no idea if this is really the case, but it's probably in the ballpark), two ounces of beef marrow would contain about 10 micrograms MK-4. Not a huge source, but significant nevertheless.

Bone marrow was a prized food in many hunter-gatherer societies. Let's see what Dr. Weston Price has to say about it (from Nutrition and Physical Degeneration):
For the Indians living inside the Rocky Mountain Range in the far North of Canada, the successful nutrition for nine months of the year was largely limited to wild game, chiefly moose and caribou. During the summer months the Indians were able to use growing plants. During the winter some use was made of bark and buds of trees. I found the Indians putting great emphasis upon the eating of the organs of the animals, including the wall of parts of the digestive tract. Much of the muscle meat of the animals was fed to the dogs. It is important that skeletons are rarely found where large game animals have been slaughtered by the Indians of the North. The skeletal remains are found as piles of finely broken bone chips or splinters that have been cracked up to obtain as much as possible of the marrow and nutritive qualities of the bones. These Indians obtain their fat-soluble vitamins and also most of their minerals from the organs of the animals. An important part of the nutrition of the children consisted in various preparations of bone marrow, both as a substitute for milk and as a special dietary ration.
Here's a bit more about these same groups, also from Nutrition and Physical Degeneration:
The condition of the teeth, and the shape of the dental arches and the facial form, were superb. Indeed, in several groups examined not a single tooth was found that had ever been attacked by tooth decay. In an examination of eighty-seven individuals having 2,464 teeth only four teeth were found that had ever been attacked by dental caries. This is equivalent to 0.16 per cent. As we came back to civilization and studied, successively, different groups with increasing amounts of contact with modern civilization, we found dental caries increased progressively, reaching 25.5 per cent of all of the teeth examined at Telegraph Creek, the point of contact with the white man's foods. As we came down the Stikine River to the Alaskan frontier towns, the dental caries problem increased to 40 per cent of all of the teeth.
Evidently, the traditionally-living groups were doing something right.

Monday, 4 August 2014

Real Food X: Roasted Marrow Bones

Bone marrow is a food that has been prized throughout history-- from hunter-gatherer tribes to haute cuisine chefs. It's not hard to understand why, once you've tasted it. It's delicate, meaty and fatty. It's also rich in fat-soluble vitamins, including vitamins K1 and K2, although this will depend on what the animal has eaten.

Roasted marrow bones make a simple appetizer. Beef bones are the best because of their size. Select wide bones that are cut about three inches long. They should be from the femur or the humerus, called the "shank bones". These are sometimes available in the frozen meats section of a grocery store, otherwise a butcher can procure them. If you have access to a farmer's market that sells meats, vendors will typically have bones cut for you if you request it.

Recipe
  1. Preheat oven to 450 F (230 C).
  2. Place bones, cut side up, in a baking dish or oven-proof skillet.
  3. Bake for about 15 minutes, until the marrow begins to separate from the bone, but not much longer because it will turn to mush.
  4. Scoop out and eat the marrow by itself, on sourdough rye toast or however you please.
  5. Make soup stock from the leftover bones.

Sunday, 3 August 2014

Butter, Margarine and Heart Disease

Shortly after World War II, margarine replaced butter in the U.S. food supply. Margarine consumption exceeded butter in the 1950s. By 1975, we were eating one-fourth the amount of butter eaten in 1900 and ten times the amount of margarine. Margarine was made primarily of hydrogenated vegetable oils, as many still are today. This makes it one of our primary sources of trans fat. The consumption of trans fats from other sources also likely tracked closely with margarine intake.


Coronary heart disease (CHD) resulting in a loss of blood flow to the heart (heart attack), was first described in detail in 1912 by Dr. James B. Herrick. Sudden cardiac death due to CHD was considered rare in the 19th century, although other forms of heart disease were diagnosed regularly by symptoms and autopsies. They remain rare in many non-industrial cultures today. This could not have resulted from massive underdiagnosis because heart attacks have characteristic symptoms, such as chest pain that extends along the arm or neck. Physicians up to that time were regularly diagnosing heart conditions other than CHD. The following graph is of total heart disease mortality in the U.S. from 1900 to 2005. It represents all types of heart disease mortality, including 'heart failure', which are non-CHD disorders like arrhythmia and myocarditis.

The graph above is not age-adjusted, meaning it doesn't reflect the fact that lifespan has increased since 1900. I couldn't compile the raw data myself without a lot of effort, but the age-adjusted graph is here. It looks similar to the one above, just a bit less pronounced. I think it's interesting to note the close similarity between the graph of margarine intake and the graph of heart disease deaths. The butter intake graph is also essentially the inverse of the heart disease graph.

Here's where it gets really interesting. The U.S. Centers for Disease Control has also been tracking CHD deaths specifically since 1900. Again, it would be a lot of work for me to compile the raw data, but it can be found here and a graph is in Anthony Colpo's book The Great Cholesterol Con. Here's the jist of it: there was essentially no CHD mortality until 1925, at which point it skyrocketed until about 1970, becoming the leading cause of death. After that, it began to fall due to improved medical care. There are some discontinuities in the data due to changes in diagnostic criteria, but even subtracting those, the pattern is crystal clear.

The age-adjusted heart disease death rate (all forms of heart disease) has been falling since the 1950s, largely due to improved medical treatment. Heart disease incidence has not declined substantially, according to the Framingham Heart study. We're better at keeping people alive in the 21st century, but we haven't successfully addressed the root cause of heart disease.

Was the shift from butter to margarine involved in the CHD epidemic? We can't make any firm conclusions from these data, because they're purely correlations. But there are nevertheless mechanisms that support a protective role for butter, and a detrimental one for margarine. Butter from pastured cows is one of the richest known sources of vitamin K2. Vitamin K2 plays a central role in protecting against arterial calcification, which is an integral part of arterial plaque and the best single predictor of cardiovascular death risk. In the early 20th century, butter was typically from pastured cows.

Margarine is a major source of trans fat. Trans fat is typically found in vegetable oil that has been hydrogenated, rendering it solid at room temperature. Hydrogenation is a chemical reaction that is truly disgusting. It involves heat, oil, hydrogen gas and a metal catalyst. I hope you give a wide berth to any food that says "hydrogenated" anywhere in the ingredients. Some modern margarine is supposedly free of trans fats, but in the U.S., less than 0.5 grams per serving can be rounded down so the nutrition label is not a reliable guide. Only by looking at the ingredients can you be sure that the oils haven't been hydrogenated. Even if they aren't, I still don't recommend margarine, which is an industrially processed pseudo-food.

One of the strongest explanations of CHD is the oxidized LDL hypothesis. The idea is that LDL lipoprotein particles ("LDL cholesterol") become oxidized and stick to the vessel walls, creating an inflammatory cascade that results in plaque formation. Chris Masterjohn wrote a nice explanation of the theory here. Several things influence the amount of oxidized LDL in the blood, including the total amount of LDL in the blood, the antioxidant content of the particle, the polyunsaturated fat content of LDL (more PUFA = more oxidation), and the size of the LDL particles. Small LDL is considered more easily oxidized than large LDL. Small LDL is also associated with elevated CHD mortality. Trans fat shrinks your LDL compared to butter.

In my opinion, it's likely that both the decrease in butter consumption and the increase in trans fat consumption contributed to the massive incidence of CHD seen in the U.S. and other industrial nations today. I think it's worth noting that France has the highest per-capita dairy fat consumption of any industrial nation, along with a comparatively low intake of hydrogenated fat, and also has the second-lowest rate of CHD, behind Japan.

Thursday, 31 July 2014

Vitamin K2 and Cranial Development

One of the things Dr. Weston Price noticed about healthy traditional cultures worldwide is their characteristically broad faces, broad dental arches and wide nostrils. Due to the breadth of their dental arches, they invariably had straight teeth and enough room for wisdom teeth. As soon as these same groups adopted white flour and sugar, the next generation to be born grew up with narrow faces, narrow dental arches, crowded teeth, pinched nostrils and a characteristic underdevelopment of the middle third of the face.

Here's an excerpt from Nutrition and Physical Degeneration, about traditional and modernized Swiss groups. Keep in mind these are Europeans we're talking about (although he found the same thing in all the races he studied):

The reader will scarcely believe it possible that such marked differences in facial form, in the shape of the dental arches, and in the health condition of the teeth as are to be noted when passing from the highly modernized lower valleys and plains country in Switzerland to the isolated high valleys can exist. Fig. 3 shows four girls with typically broad dental arches and regular arrangement of the teeth. They have been born and raised in the Loetschental Valley or other isolated valleys of Switzerland which provide the excellent nutrition that we have been reviewing.
Another change that is seen in passing from the isolated groups with their more nearly normal facial developments, to the groups of the lower valleys, is the marked irregularity of the teeth with narrowing of the arches and other facial features... While in the isolated groups not a single case of a typical mouth breather was found, many were seen among the children of the lower-plains group. The children studied were from ten to sixteen years of age.
Price attributed this physical change to a lack of minerals and the fat-soluble vitamins necessary to make good use of them: vitamin A, vitamin D and what he called "activator X"-- now known to be vitamin K2 MK-4. The healthy cultures he studied all had an adequate source of vitamin K2, but many ate very little K1 (which comes mostly from vegetables). Inhabitants of the Loetschental valley ate green vegetables only in summer, due to the valley's harsh climate. The rest of the year, the diet was limited chiefly to whole grain sourdough rye bread and pastured dairy products.

The dietary transitions Price observed were typically from mineral- and vitamin-rich whole foods to refined modern foods, predominantly white flour and sugar. The villagers of the Loetschental valley obtained their fat-soluble vitamins from pastured dairy, which is particularly rich in vitamin K2 MK-4.

In a modern society like the U.S., most people exhibit signs of poor cranial development. How many people do you know with perfectly straight teeth who never required braces? How many people do you know whose wisdom teeth erupted normally?

The archaeological record shows that our hunter-gatherer ancestors generally didn't have crooked teeth. Humans evolved to have dental arches in proportion to their tooth size, like all animals. Take a look at these chompers. That skull is from an archaeological site in the Sahara desert that predates agriculture in the region. Those beautiful teeth are typical of paleolithic humans and modern hunter-gatherers. Crooked teeth and impacted wisdom teeth are only as old as agriculture. However, Price found that with care, certain traditional cultures were able to build well-formed skulls on an agricultural diet.

So was Price on to something, or was he just cherry picking individuals that supported his hypothesis? It turns out there's a developmental syndrome in the literature that might shed some light on this. It's called Binder's syndrome. Here's a description from a review paper about Binder's syndrome (emphasis mine):

The essential features of maxillo-nasal dysplasia were initially described by Noyes in 1939, although it was Binder who first defined it as a distinct clinical syndrome. He reported on three cases and recorded six specific characteristics:5
  • Arhinoid face.
  • Abnormal position of nasal bones.
  • Inter-maxillary hypoplasia with associated malocclusion.
  • Reduced or absent anterior nasal spine.
  • Atrophy of nasal mucosa.
  • Absence of frontal sinus (not obligatory).
Individuals with Binder's syndrome have a characteristic appearance that is easily recognizable.6 The mid-face profile is hypoplastic, the nose is flattened, the upper lip is convex with a broad philtrum, the nostrils are typically crescent or semi-lunar in shape due to the short collumela, and a deep fold or fossa occurs between the upper lip and the nose, resulting in an acute nasolabial angle.
Allow me to translate: in Binder's patients, the middle third of the face is underdeveloped, they have narrow dental arches and crowded teeth, small nostrils and abnormally small sinuses (sometimes resulting in mouth breathing). Sound familiar? So what causes Binder's syndrome? I'll give you a hint: it can be caused by prenatal exposure to warfarin (coumadin).

Warfarin is rat poison. It kills rats by causing them to lose their ability to form blood clots, resulting in massive hemmorhage. It does this by depleting vitamin K, which is necessary for the proper functioning of blood clotting factors. It's used (in small doses) in humans to thin the blood as a treatment for abnormal blood clots. As it turns out, Binder's syndrome can be caused by
a number of things that interfere with vitamin K metabolism. The sensitive period for humans is the first trimester. I think we're getting warmer...

Another name for Binder's syndrome is "warfarin embryopathy". There happens to be
a rat model of it. Dr. Bill Webster's group at the University of Sydney injected rats daily with warfarin for up to 12 weeks, beginning on the day they were born (rats have a different developmental timeline than humans). They also administered large doses of vitamin K1 along with it. This is to ensure the rats continue to clot normally, rather than hemorrhaging. Another notable property of warfarin that I've mentioned before is its ability to inhibit the conversion of vitamin K1 to vitamin K2 MK-4. Here's what they had to say about the rats:

The warfarin-treated rats developed a marked maxillonasal hypoplasia associated with a 11-13% reduction in the length of the nasal bones compared with controls... It is proposed that (1) the facial features of the human warfarin embryopathy are caused by reduced growth of the embryonic nasal septum, and (2) the septal growth retardation occurs because the warfarin-induced extrahepatic vitamin K deficiency prevents the normal formation of the vitamin K-dependent matrix gla protein in the embryo.
"Maxillonasal hypoplasia" means underdevelopment of the jaws and nasal region. Proper development of this region requires fully active matrix gla protein (MGP), which I've written about before in the context of vascular calcification. MGP requires vitamin K to activate it, and it seems to prefer K2 MK-4 to K1, at least in the vasculature. Administering K2 MK-4 along with warfarin prevents warfarin's ability to cause arterial calcification (thought to be an MGP-dependent mechanism), whereas administering K1 does not.
Here are a few quotes from a review paper by Dr. Webster's group. I have to post the whole abstract because it's a gem:

The normal vitamin K status of the human embryo appears to be close to deficiency [I would argue in most cases the embryo is actually deficient, as are most adults in industrial societies]. Maternal dietary deficiency or use of a number of therapeutic drugs during pregnancy, may result in frank vitamin K deficiency in the embryo. First trimester deficiency results in maxillonasal hypoplasia in the neonate with subsequent facial and orthodontic implications. A rat model of the vitamin K deficiency embryopathy shows that the facial dysmorphology is preceded by uncontrolled calcification in the normally uncalcified nasal septal cartilage, and decreased longitudinal growth of the cartilage, resulting in maxillonasal hypoplasia. The developing septal cartilage is normally rich in the vitamin K-dependent protein matrix gla protein (MGP). It is proposed that functional MGP is necessary to maintain growing cartilage in a non-calcified state. Developing teeth contain both MGP and a second vitamin K-dependent protein, bone gla protein (BGP). It has been postulated that these proteins have a functional role in tooth mineralization. As yet this function has not been established and abnormalities in tooth formation have not been observed under conditions where BGP and MGP should be formed in a non-functional form.
Could vitamin K insufficiency be related to underdeveloped facial structure in industrialized cultures?  Price felt that to ensure the proper development of their children, mothers should eat a diet rich in fat-soluble vitamins both before and during pregnancy. This makes sense in light of what we now know. There is a pool of vitamin K2 MK-4 in the organs that turns over very slowly, in addition to a pool in the blood that turns over rapidly. Entering pregnancy with a full store means a greater chance of having enough of the vitamin for the growing fetus. Healthy traditional cultures often fed special foods rich in fat-soluble vitamins to women of childbearing age and expectant mothers, thus ensuring beautiful and robust progeny.

Tuesday, 29 July 2014

Latest Study on Vitamin K and Coronary Heart Disease

A Dutch group led by Dr. Yvonne T. van der Schouw recently published a paper examining the link between vitamin K intake and heart attack (thanks Robert). They followed 16,057 women ages 49-70 years for an average of 8.1 years, collecting data on their diet and incidence of heart attack.

They found no relationship between K1 intake and heart attack incidence. K1 is the form found in leafy greens and other plant foods. They found that each 10 microgram increase in daily vitamin K2 consumption was associated with a 9% lower incidence of heart attack. Participants consumed an average of 29 micrograms K2 per day, with a range of 0.9 to 128 micrograms. That means that participants with the highest intake had a very much reduced incidence of heart attack on average. Vitamin K2 comes from animal foods (especially organs and pastured dairy)and fermented foods such as cheese, sauerkraut, miso and natto. Vitamin K is fat-soluble, so low-fat animal foods contain less of it. Animal foods contain the MK-4 subtype while fermentation produces longer menaquinones, MK-5 through MK-14.

There's quite a bit of evidence to support the idea that vitamin K2 inhibits and possibly reverses arterial calcification, which is possibly the best overall measure of heart attack risk. It began with the observations of Dr. Weston Price, who noticed an inverse relationship between the K2 MK-4 content of butter and deaths from coronary heart disease and pneumonia in several regions of the U.S. You can find those graphs in Nutrition and Physical Degeneration.

The 25% of participants eating the most vitamin K2 (and with the lowest heart attack risk) also had the highest saturated fat, cholesterol, protein and calcium intake. They were much less likely to have elevated cholesterol, but were more likely to be diabetic.

Here's where the paper gets strange. They analyzed the different K2 subtypes individually (MK-4 through MK-9). MK-7 and MK-6 had the strongest association with reduced heart attack risk per microgram consumed, while MK-4 had no significant relationship. MK-8 and MK-9 had a weak but significant protective relationship.

There are a few things that make me skeptical about this result. First of all, the studies showing prevention/reversal of arterial calcification in rats were done with MK-4. MK-4 inhibits vascular calcification in rats whereas I don't believe the longer menaquinones have been tested. Furthermore, they attribute a protective effect to MK-7 in this study, but the average daily intake was only 0.4 micrograms! You could get that amount of K2 if a Japanese person who had eaten natto last week sneezed on your food. I can't imagine that amount of MK-7 is biologically significant. That, among other things, makes me skeptical of what they're really observing.

I'm not convinced of their ability to parse the effect into the different K2 subtypes. They mentioned in the methods section that their diet survey wasn't very accurate at estimating the individual K2 subtypes. Combine that with the fact that the K2 content of foods varies quite a bit by animal husbandry practice and type of cheese, and you have a lot of variability in your data. Add to that the well-recognized variability inherent in these food questionnaires, and you have even more variabiltiy.

I'm open to the idea that longer menaquinones (K2 MK-5 and longer, including MK-7) play a role in preventing cardiovascular disease, but I don't find the evidence sufficient yet. MK-4 is the form of K2 that's made by animals, for animals. Mammals produce it in their breast milk and other animals produce it in eggs all the way down to invertebrates. I think we can assume they make MK-4, and not the longer menaquinones, for a reason.

MK-4 is able to play all the roles of vitamin K in the body, including activating blood clotting factors, a role traditionally assigned to vitamin K1. This is obvious because K2 MK-4 is the only significant source of vitamin K in the diet of infants before weaning. No one knows whether the longer menaquinones are able to perform all the functions of MK-4; it hasn't been tested and I don't know how you could ever be sure. MK-7 is capable of performing at least some of these functions, such as activating osteocalcin and clotting factors.

I do think it's worth noting that the livers of certain animals contain longer menaquinones, including MK-7. So it is possible that we're adapted to eating some of the longer menaquinones. Many cultures also have a tradition of fermented food (probably a relatively recent addition to the human diet), which could further increase the intake of longer menaquinones. The true "optimum", if there is one, may be to eat a combination of forms of K2, including MK-4 and the longer forms. But babies and healthy traditional cultures such as the Masai seem to do quite well on a diet heavily weighted toward MK-4, so the longer forms probably aren't strictly necessary.

Well if you've made it this far, you're a hero (or a nerd)! Now for some humor. From the paper:

The concept of proposing beneficial effects to vitamin K2 seems to have different basis as for vitamin K1. Vitamin K1 has been associated with a heart-healthy dietary pattern in the earlier work in the USA and this attenuated their associations with CHD. Vitamin K2 has different sources and relate to different dietary patterns than vitamin K1. This suggests that the risk reduction with vitamin K2 is not driven by dietary patterns, but through biological effects.
They seem confused by the fact that people who ate foods high in saturated fat and cholesterol had less CHD, yet people consuming green vegetables didn't.  Here's more:
Thus, although our findings may have important practical implications on CVD prevention, it is important to mention that in order to increase the intake of vitamin K2, increasing the portion vitamin K2 rich foods in daily life might not be a good idea. Vitamin K2 might be, for instance more relevant in the form of a supplement or in low-fat dairy. More research into this is necessary.
Translation: "People who ate the most cheese, milk and meat had the lowest heart attack rate, but be careful not to eat those things because they might give you a heart attack. Get your K2 from low-fat dairy (barely contains any) and supplements."

Monday, 28 July 2014

Preventing Tooth Decay

Meet Sir Edward Mellanby, the man who discovered vitamin D. Along with his wife, Dr. May Mellanby, he identified dietary factors that control the formation and repair of teeth and bones. He also identified the primary cause of rickets (vitamin D deficiency) and the effect of phytic acid on mineral absorption. Truly a great man! This research began in the 1910s and continued through the 1940s.

What he discovered about tooth and bone formation is profound, disarmingly simple, and largely forgotten. I remember going to the dentist as a child. He told me I had good teeth. I informed him that I tried to eat well and stay away from sweets. He explained to me that I had good teeth because of genetics, not my diet. I was skeptical at the time, and rightly so.

Tooth structure is primarily determined during growth. Well-formed teeth are highly resistant to decay, while poorly-formed teeth are cavity-prone. Drs. Mellanby demonstrated this by showing a strong correlation between tooth enamel defects and cavities in British children. The following graph is drawn from several studies he compiled in the book Nutrition and Disease (1934). "Hypoplastic" refers to enamel that's poorly formed on a microscopic level.
The graph is confusing, so don't worry if you're having a hard time interpreting it. If you look at the blue bar representing children with well-formed teeth, you can see that 77% of them have no cavities, and only 7.5% have severe cavities (a "3" on the X axis). Looking at the green bar, only 6% of children with the worst enamel structure are without cavities, while 74% have severe cavities. Enamel structure is VERY strongly related to cavity prevalence.

What determines enamel structure during growth? Drs. Mellanby identified three dominant factors:
  1. The mineral content of the diet
  2. The fat-soluble vitamin content of the diet, chiefly vitamin D
  3. The availability of minerals for absorption, determined largely by the diet's phytic acid content
Teeth and bones are a mineralized protein scaffold. Vitamin D influences the quality of the protein scaffold that's laid down, and the handling of the elements that mineralize it. For the scaffold to mineralize, the diet has to contain enough minerals, primarily calcium and phosphorus. Vitamin D allows the digestive system to absorb the minerals, but it can only absorb them if they aren't bound by phytic acid. Phytic acid is an anti-nutrient found primarily in unfermented seeds such as grains. So the process depends on getting minerals (sufficient minerals in the diet and low phytic acid) and putting them in the right place (fat-soluble vitamins).

Optimal tooth and bone formation occurs only on a diet that is sufficient in minerals, fat-soluble vitamins, and low in phytic acid
. Drs. Mellanby used dogs in their experiments, which it turns out are a good model for tooth formation in humans for a reason I'll explain later. From Nutrition and Disease:
Thus, if growing puppies are given a limited amount of separated [skim] milk together with cereals, lean meat, orange juice, and yeast (i.e., a diet containing sufficient energy value and also sufficient proteins, carbohydrates, vitamins B and C, and salts), defectively formed teeth will result. If some rich source of vitamin D be added, such as cod-liver oil or egg-yolk, the structure of the teeth will be greatly improved, while the addition of oils such as olive... leaves the teeth as badly formed as when the basal diet only is given... If, when the vitamin D intake is deficient, the cereal part of the diet is increased, or if wheat germ [high in phytic acid] replaces white flour, or, again, if oatmeal [high in phytic acid] is substituted for white flour, then the teeth tend to be worse in structure, but if, under these conditions, the calcium intake is increased, then calcification [the deposition of calcium in the teeth] is improved.
Other researchers initially disputed the Mellanbys' results because they weren't able to replicate the findings in rats. It turns out, rats produce the phytic acid-degrading enzyme phytase in their small intestine, so they can extract minerals from unfermented grains better than dogs. Humans also produce phytase, but at levels so low they don't significantly degrade phytic acid. The small intestine of rats has about 30 times the phytase activity of the human small intestine, again demonstrating that humans are not well adapted to eating grains. Our ability to extract minerals from seeds is comparable to that of dogs, which shows that the Mellanbys' results are more applicable to humans than those in rats.

Drs. Mellanby found that the same three factors determine bone quality in dogs as well, which I may discuss in another post.

Is there anything someone with fully formed enamel can do to prevent tooth decay? Drs. Mellanby showed (in humans this time) that not only can tooth decay be prevented by a good diet, it can be almost completely reversed even if it's already present. Dr. Weston Price used a similar method to reverse tooth decay as well. I'll discuss that in my next post.

Reversing Tooth Decay

In the last post, I discussed the research of Drs. Edward and May Mellanby on the nutritional factors affecting tooth formation. Dr. Mellanby is the man who discovered vitamin D and identified the cause of rickets. Nutrition has a profound effect on tooth structure, and well-formed teeth are inherently resistant to decay. But is there anything you can do if your teeth are already formed?

Teeth are able to heal themselves. That's one reason why traditional cultures such as the Inuit can wear their teeth down to the pulp due to chewing leather and sand-covered dried fish, yet still have an exceptionally low rate of tooth decay. It's also how the African Wakamba tribe could traditionally file their front teeth into sharp points without causing decay. Both cultures lost their resistance to tooth decay after adopting nutrient-poor Western foods such as white flour and sugar.

Teeth are made of four layers.
Enamel is the hardest, most mineralized outer shell. Dentin is another protective mineralized layer that's below the enamel. Below the dentin is the pulp, which contains blood vessels and nerves. The roots are coated with cementum, another mineralized tissue.

When enamel is poorly formed and/or the diet isn't adequate, enamel demineralizes and decay sets in. Tooth decay is an opportunistic infection that takes advantage of poorly developed or maintained teeth. If the diet remains inadequate, the tooth has to be filled or removed, or the person risks more serious complications.


Fortunately, a decaying or broken tooth has the ability to heal itself if the diet is good, including by remineralizing enamel and dentin, and/or forming a limited quantity of new dentin. This new dentin is deposited by specialized cells called odontoblasts. Here's what Dr. Edward Mellanby had to say about his wife's research on the subject. This is taken from Nutrition and Disease:
Since the days of John Hunter it has been known that when the enamel and dentine are injured by attrition or caries, teeth do not remain passive but respond to the injury by producing a reaction of the odontoblasts in the dental pulp in an area generally corresponding to the damaged tissue and resulting in a laying down of what is known as secondary dentine. In 1922 M. Mellanby proceeded to investigate this phenomenon under varying nutritional conditions and found that she could control the secondary dentine laid down in the teeth of animals as a reaction to attrition both in quality and quantity, independently of the original structure of the tooth. Thus, when a diet of high calci­fying qualities, ie., one rich in vitamin D, calcium and phosphorus was given to the dogs during the period of attrition, the new secondary dentine laid down was abundant and well formed whether the original structure of the teeth was good or bad. On the other hand, a diet rich in cereals and poor in vitamin D resulted in the production of secondary dentine either small in amount or poorly calcified, and this happened even if the primary dentine was well formed.
Thus, in dogs, the factors that affect tooth healing are the same factors that affect tooth development:

  1. The mineral content of the diet, particularly calcium and phosphorus
  2. The fat-soluble vitamin content of the diet, chiefly vitamin D
  3. The availability of minerals for absorption, determined largely by the diet's phytic acid content (prevents mineral absorption)
What about humans? Drs. Mellanby set out to see if they could use their dietary principles to cure tooth decay that was already established. They divided 62 children with cavities into three different diet groups for 6 months. Group 1 ate their normal diet plus oatmeal (rich in phytic acid). Group 2 ate their normal diet plus vitamin D. Group 3 ate a grain-free diet and took vitamin D.

In group 1, oatmeal prevented healing and encouraged new cavities, presumably due to its ability to prevent mineral absorption. In group 2, simply adding vitamin D to the diet caused most cavities to heal and fewer to form. The most striking effect was in group 3, the group eating a grain-free diet plus vitamin D, in which nearly all cavities healed and very few new cavities developed. Grains are the main source of phytic acid in the modern diet, although we can't rule out the possibility that grains were promoting tooth decay through another mechanism as well.

Dr. Mellanby was quick to point out that diet 3 contained some carbohydrate (~45% reduction) and was not low in sugar: "Although [diet 3] contained no bread, porridge or other cereals, it included a moderate amount of carbohydrates, for plenty of milk, jam, sugar, potatoes and vegetables were eaten by this group of children." This study was published in the British Medical Journal (1) and
the British Dental journal. Here's Dr. Edward Mellanby again:
The hardening of carious areas that takes place in the teeth of children fed on diets of high calcifying value indicates the arrest of the active process and may result in “healing” of the infected area. As might be surmised, this phenomenon is accompanied by a laying down of a thick barrier of well-formed secondary denture... Summing up these results it will be clear that the clinical deductions made on the basis of the animal experiments have been justified, and that it is now known how to diminish the spread of caries and even to stop the active carious process in many affected teeth.
Dr. Mellanby first began publishing studies showing the reversal of cavities in humans using diet in 1924. Why has such a major medical finding, published in high-impact peer-reviewed journals, faded into obscurity?

Dr. Weston Price also had success curing tooth decay using a similar diet. He fed poor children one very nutritious meal a day and monitored their dental health. From Nutrition and Physical Degeneration (p. 290):

About four ounces of tomato juice or orange juice and a teaspoonful of a mixture of equal parts of a very high vitamin natural cod liver oil and an especially high vitamin butter was given at the beginning of the meal. They then received a bowl containing approximately a pint of a very rich vegetable and meat stew, made largely from bone marrow and fine cuts of tender meat: the meat was usually broiled separately to retain its juice and then chopped very fine and added to the bone marrow meat soup which always contained finely chopped vegetables and plenty of very yellow carrots; for the next course they had cooked fruit, with very little sweetening, and rolls made from freshly ground whole wheat, which were spread with the high-vitamin butter. The wheat for the rolls was ground fresh every day in a motor driven coffee mill. Each child was also given two glasses of fresh whole milk. The menu was varied from day to day by substituting for the meat stew, fish chowder or organs of animals.
Dr. Price provides before and after X-rays showing re-calcification of cavity-ridden teeth on this program. His intervention was not exactly the same as Drs. Mellanby, but it was similar in many ways. Both diets were high in minerals, rich in fat-soluble vitamins (including D), and low in phytic acid.

Price's diet was not grain-free, but used rolls made from freshly ground whole wheat. Freshly ground whole wheat has a high phytase (the enzyme that degrades phytic acid) activity, thus in conjunction with the long yeast rises common in Price's time, it would have broken down nearly all of its own phytic acid. This would have made it a source of minerals rather than a sink for them. He also used high-vitamin pastured butter in conjunction with cod liver oil. We now know that the vitamin K2 in pastured butter is important for bone and tooth development and maintenance. This was something that Dr. Mellanby did not understand at the time, but modern research has corroborated Price's finding that K2 is synergistic with vitamin D in promoting skeletal and dental health.

If I were to design the ultimate dietary program to heal cavities that incorporates the successes of both doctors, it would look something like this:

  • Rich in animal foods, particularly full-fat pastured dairy products (if tolerated) and bone broths. Also meat, organs, fish, and eggs.
  • Fermented grains only; no unfermented grains such as oatmeal, breakfast cereal, crackers, etc. No breads except true sourdough (ingredients should not list lactic acid). Or even better, no grains at all.
  • Limited nuts; beans in moderation, only if they're soaked overnight or longer prior to cooking (due to the phytic acid).
  • Starchy vegetables such as potatoes and sweet potatoes.
  • A limited quantity of fruit (one piece per day or less), but no refined sweets.
  • Cooked and raw vegetables.
  • Sunlight, high-vitamin cod liver oil, or vitamin D3 supplements.
  • Pastured butter.
  • No industrially processed food.
This diet would maximize mineral absorption while providing abundant fat-soluble vitamins. It probably isn't necessary to follow it strictly. For example, if you eat more mineral-rich foods such as dairy and bone broths, you can probably get away with more phytic acid. Or you might be able to heal cavities eating like this for only one or two meals a day, as Dr. Price demonstrated. 

This post is focused on diet, but obviously oral hygiene also matters.  Brushing your teeth, flossing, and rinsing your mouth out after meals will also reduce dental risks.  

The technique described above is applicable to early-stage, small cavities, not necessarily to advanced decay.  If you try to heal your own cavities using diet, please do it under the supervision of a dentist.  

Saturday, 26 July 2014

Nutrition and Infectious Disease

Dr. Edward Mellanby's book Nutrition and Disease contains a chapter titled "Nutrition and Infection". It begins:
There is general agreement among medical men that the susceptibility of mankind to many types of infection is closely related to the state of nutrition. The difficulty arises, when closer examination is given to this general proposition, as to what constitutes good and bad nutrition, and the problem is not rendered easier by recent advances in nutritional science.
Dr. Mellanby was primarily concerned with the effect of fat-soluble vitamins on infectious disease, particularly vitamins A and D. One of his earliest observations was that butter protected against pneumonia in his laboratory dogs. He eventually identified vitamin A as the primary protective factor. He found that by placing rats on a diet deficient in vitamin A, they developed numerous infectious lesions, most often in the urogenital tract, the eyes, the intestine, the middle ear and the lungs. This was prevented by adding vitamin A or cabbage (a source of beta-carotene, which the rats converted to vitamin A) to the diet. Mellanby and his colleagues subsequently dubbed vitamin A the "anti-infective vitamin".

Dr. Mellanby was unsure whether the animal results would apply to humans, due to "the difficulty in believing that diets even of poor people were as deficient in vitamin A and carotene as the experimental diets." However, their colleagues had previously noted marked differences in the infection rate of largely vegetarian African tribes versus their carnivorous counterparts. The following quote from
Nutrition and Disease refers to two tribes which, by coincidence, Dr. Weston Price also described in Nutrition and Physical Degeneration:
The high incidence of bronchitis, pneumonia, tropical ulcers and phthisis among the Kikuyu tribe who live on a diet mainly of cereals as compared with the low incidence of these diseases among their neighbours the Masai who live on meat, milk and raw blood (Orr and Gilks), probably has a similar or related nutritional explanation. The differences in distribution of infective disease found by these workers in the two tribes are most impressive. Thus in the cereal-eating tribe, bronchitis and pneumonia accounted for 31 per cent of all cases of sickness, tropical ulcers for 33 per cent, and phthisis for 6 per cent. The corresponding figures for the meat, milk and raw blood tribe were 4 per cent, 3 per cent and 1 per cent.
So they set out to test the theory under controlled conditions. Their first target: puerperal sepsis. This is an infection of the uterus that occurs after childbirth. They divided 550 women into two groups: one received vitamins A and D during the last month of pregnancy, and the other received nothing. Neither group was given instructions to change diet, and neither group was given vitamins during their hospital stay. The result, quoted from Nutrition and Disease:
The morbidity rate in the puerperium using the [British Medical Association] standard was 1.1 per cent in the vitamin group and 4.7 in the control group, a difference of 3.6 per cent which is twice the standard error (1.4), and therefore statistically significant.
This experiment didn't differentiate between the effects of vitamin A and D, but it did establish that fat-soluble vitamins are important for resistance to bacterial infection. The next experiment Dr. Mellanby undertook was a more difficult one. This time, he targeted puerperal septicemia. This is a more advanced stage of puerperal sepsis, in which the infection spreads into the bloodstream. In this experiment, he treated women who had already contracted the infection. This trial was not as tightly controlled as the previous one. Here's a description of the intervention, from Nutrition and Disease:
...all patients received when possible a diet rich not only in vitamin A but also of high biological quality. This diet included much milk, eggs, green vegetables, etc., as well as the vitamin A supplement. For controls we had to use the cases treated in previous years by the same obstetricians and gynecologists as the test cases.
In the two years prior to this investigation, the mortality rate for puerperal septicemia in 18 patients was 92%. In 1929, Dr. Mellanby fed 18 patients in the same hospital his special diet, and the mortality rate was 22%. This is a remarkable treatment for an infection that was almost invariably fatal at the time.

Dr. Mellanby was a man with a lot of perspective. He was not a reductionist; he knew that a good diet is more than the sum of its parts. Here's another quote from
Nutrition and Disease:
It is probable that, as in the case of vitamin D and rickets, the question is not simple and that it will ultimately be found that vitamin A works in harmony with some dietetic factors, such as milk proteins and other proteins of high biological value, to promote resistance of mucous membranes and epithelial cells to invasion by micro-organisms, while other factors such as cereals, antagonise its influence. The effect of increasing the green vegetable and reducing the cereal intake on the resistance of herbivorous animals to infection is undoubted (Glenny and Allen, Boock and Trevan) and may well indicate a reaction in which the increased carotene of the vegetable plays only a part, but an important part.

P.S.- I have to apologize, I forgot to copy down the primary literature references for this post before returning the book to the library. So for the skeptics out there, you'll either have to take my word for it, or find a copy of the book yourself.