Saturday, 19 July 2014

Malocclusion: Disease of Civilization, Part V

Prenatal Development of the Face and Jaws

The structures of the face and jaws take shape during the first trimester of pregnancy. The 5th to 11th weeks of pregnancy are particularly crucial for occlusion, because this is when the jaws, nasal septum and other cranial structures form. The nasal septum is the piece of cartilage that forms the structure of the nose and separates the two air passages as they enter the nostrils.


Maternal Nutritional Status Affects Fetal Development


Abnormal nutrient status can lead to several types of birth defects. Vitamin A is an essential signaling molecule during development. Both deficiency and excess can cause birth defects, with the effects predominantly targeting the cranium and nervous system, respectively. Folic acid deficiency causes birth defects of the brain and spine. Other nutrients such as vitamin B12 may influence the risk of birth defects as well*.


The Role of Vitamin K


As early as the 1970s, physicians began noting characteristic developmental abnormalities in infants whose mothers took the blood-thinning drug warfarin (coumadin) during the first trimester of pregnancy. These infants showed an underdevelopment of the nasal septum, the maxilla (upper jaw), small or absent sinuses, and a characteristic "dished" face. This eventually resulted in narrow dental arches, severe malocclusion and tooth crowding**. The whole spectrum was called Binder's syndrome, or warfarin embryopathy.

Warfarin works by inhibiting vitamin K recycling, thus depleting a nutrient necessary for normal blood clotting.
It's now clear that Binder's syndrome can result from anything that interferes with vitamin K status during the first trimester of pregnancy. This includes warfarin, certain anti-epilepsy drugs, certain antibiotics, genetic mutations that interfere with vitamin K status, and celiac disease (intestinal damage due to gluten).

Why is vitamin K important for the development of the jaws and face of the fetus? Vitamin K is required to activate a protein called matrix gla protein (MGP), which prevents unwanted calcification of the nasal septum in the developing fetus (among
other things). If this protein isn't activated by vitamin K during the critical developmental window, calcium deposits form in the nasal septum, stunting its growth and also stunting the growth of the maxilla and sinuses. Low activity of MGP appears to be largely responsible for Binder's syndrome, since the syndrome can be caused by genetic mutations in MGP in humans. Small or absent sinuses are common in the general population.

One of the interesting things about MGP is its apparent preference for vitamin K2 over vitamin K1.
Vitamin K1 is found predominantly in green vegetables, and is sufficient to activate blood clotting factors and probably some other vitamin K-dependent proteins. "Vitamin K2" refers to a collection of molecules known as menaquinones. These are denoted as "MK", followed by a number indicating the length of the side chain attached to the quinone ring.

Biologically important menaquinones are MK-4 through MK-12 or so. MK-4 is the form that animals synthesize from vitamin K1 for their own use. Certain organs (brain, pancreas, salivary gland, arteries) preferentially accumulate K2 MK-4, and certain cellular processes are also selective for K2 MK-4 (
MGP activation, PKA-dependent transcriptional effects). Vitamin K2 MK-4 is found almost exclusively in animal foods, particularly pastured butter, organs and eggs. It is always found in foods designed to nourish growing animals, such as eggs and milk.

Humans have the ability to convert K1 to K2 when K1 is ingested in artificially large amounts. However, due to the limited absorption of normal dietary sources of K1 and the unknown conversion efficiency, it's unclear how much green vegetables contribute to K2 status. Serum vitamin K1 reaches a plateau at about 200 micrograms per day of dietary K1 intake, the equivalent of 1/4 cup of cooked spinach (see figure 1 of this paper). Still, I think eating green vegetables regularly is a good idea, and may contribute to K2 status.
Other menaquinones such as MK-7 (found in natto) may contribute to K2 status as well, but this question has not been resolved.

Severe vitamin K deficiency clearly impacts occlusion. Could more subtle deficiency lead to a less pronounced form of the same developmental syndrome? Here are a few facts about vitamin K relevant to this question:
  • In industrial societies, newborns are typically vitamin K deficient. This is reflected by the fact that in the US, nearly all newborns are given vitamin K1 at birth to prevent potentially fatal hemorrhage. In Japan, infants are given vitamin K2 MK-4, which is equally effective at preventing hemmorhage.
  • Fetuses generally have low vitamin K status, as measured by the activity of their clotting factors.
  • The human placenta transports vitamin K across the placental barrier and accumulates it. This transport mechanism is highly selective for vitamin K2 MK-4 over K1.
  • The concentration of K1 in maternal blood is much higher than its concentration in umbilical cord blood, whereas the concentration of K2 in maternal blood is similar to the concentration in cord blood. Vitamin K2 MK-7 is undetectable in cord blood, even when supplemented, suggesting that MK-7 is not an adequate substitute for MK-4 during pregnancy.
  • In rat experiments, arterial calcification due to warfarin was inhibited by vitamin K2 MK-4, but not vitamin K1. This is probably due to K2's ability to activate MGP, the same protein required for the normal development of the human face and jaws.
  • The human mammary gland appears to be the most capable organ at converting vitamin K1 to K2 MK-4.
Together, this suggests that in industrial societies, fetuses and infants are vitamin K deficient, to the point of being susceptible to fatal hemorrhage. It also suggests that vitamin K2 MK-4 plays a critical role in fetal and early postnatal development. Could subclinical vitamin K2 deficiency be contributing to the high prevalence of malocclusion in modern societies?

An Ounce of Prevention


Vitamin A, folic acid, vitamin D and vitamin K2 are all nutrients with a long turnover time. Body stores of these nutrients depend on long-term intake. Thus, the nutritional status of the fetus during the first trimester reflects what the mother has been eating for several months
before conception.

Dr. Weston Price noted that a number of the traditional societies he visited prepared women of childbearing age for healthy pregnancies by giving them special foods rich in fat-soluble vitamins. This allowed them to gestate and rear healthy, well-formed children.
Nutrient-dense animal foods and green vegetables are a good idea before, during and after pregnancy.


* Liver is the richest source of vitamin A, folic acid and B12.


** Affected individuals may show class I, II, or III malocclusion.

No comments:

Post a Comment